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The Relativistic Black Scholes Model presented in this paper is a generalization that is not very well known 

since the original version of 1973, because its effects are still not very significant. Actually, any small 

advantage in information knowledge in the High-Frequency Trading can become great arbitrage 

opportunities. In order to determine the value of a financial option, it is necessary to construct a density 

function associated with the determination of prices of financial assets using the concepts of quantum 

mechanics and relativity gathered in the Dirac equation. For the effect to be appreciated, the distance 

between traders would have to be on a large scale, but an equivalent concept can be found, which is the 

speed of light of the market, which rather involves delays in the technology used and human reaction times. 

At the end, an approximation is made of this implicit velocity parameter. 
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El modelo de Black Scholes presentado en este trabajo es una generalización a la versión relativista que no es muy 

conocida desde a la versión original de 1973, debido a que sus efectos aún son poco significativos. En el trading de alta 

frecuencia (High-Frequency Trading) de estos tiempos cualquier pequeña ventaja en el conocimiento de la 

información puede convertirse en grandes oportunidades de arbitraje. Para poder determinar el valor de una opción 

financiera es necesario construir una función de densidad asociada a la determinación de precios de activos financieros 

utilizando los conceptos de la mecánica cuántica y la relatividad reunidos en la ecuación de Dirac. Para que el efecto 

pueda ser apreciado, la distancia entre operadores tendría que ser a gran escala, pero puede encontrarse un concepto 

equivalente que es la velocidad de la luz del mercado que involucra más bien los retrasos en la tecnología utilizada y 

los tiempos humanos de reacción. Al final se hace una aproximación de este parámetro implícito de la velocidad. 
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1. Introduction 
 

In the actual world in various financial systems, whether stock markets, currency markets, 

derivatives markets, etc., the speed of information communication has become an important factor 

in obtaining arbitrage opportunities in the face of market inefficiencies. Technological developments 

in communication and increasingly efficient algorithms make it necessary to develop more 

comprehensive and general theories. 

The velocity of operations can produce unexpected events , as was the case of the Flash Crash  

on May 6, 2016, where the Dow Jones Industrial Average (DJI) had its biggest drop in a day (nearly 

9%) but also made a surprising recovery in the same day. To avoid sudden crises like the one above, 

intensive research is needed into how markets work and the complex interaction of algorithms and 

humans  in order to try to  counteract possible disasters.  

In the field of financial derivatives, the Black-Scholes equation has been the obligatory 

reference for the valuation of financial options, although its limitations are known, for example, in 

terms of volatility considerations and its distributions associated with prices, and therefore there 

have been attempts at generalizations in various theoretical directions.  

The general aim of this work is to generalize the Black-Scholes equation, taking into account 

a necessary correction in the information speed factor. According to the laws of physics, despite the 

speed of light being very high (300,000 km/s), it is a limitation in the communication of information, 

in other words, it cannot occur instantaneously, and this speed, under certain conditions, could 

represent a small advantage in intraday financial trading. 

This paper begins with a review of the main articles on brownian motion,  financial options 

and special relativity. The second part shows some of the important developments taking place in 

the world of high-frequency trading and the importance of information speed (factors influencing 

prices). In the model section, we made a review of the theoretical framework of the Black-Scholes 

equation, as well as the concepts and ideas of quantum mechanics and relativistic physics to arrive 

at the relativistic version. In the section on the proposed model, the deduction of the relativistic 

Black-Scholes equation is proposed. At the end, the results of the equivalent of the relativistic model 

are presented, as well as the parameter of the speed of light implicit in the market, and the 

conclusions. 

 

2. Literature Review 
 

This section shows some of the main works related to the subject of brownian motion and Black-

Scholes option valuation, high-frequency trading linked to the subject of special relativity. In 

Kurianovich E. A. et al (2024) an approximation is made to the theory of a relativistic random process 

that considers its use through the method of path integral considering brownian motion and taking 

into account a limit on speed. The authors constructed a relativistic analog of Wiener's measure as a 

weak limit of finite difference approximations and proposed a formula for calculating the transition 

probability of particles during relativistic brownian motion. The calculations were performed using 

different methodologies and similar results were obtained. 
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In Blaho R. et al (2022), the authors mentioned that the Black-Scholes expression, published 

in 1973, provided financial professionals with a mathematical method for determining  prices for 

European options, which was used successfully until the so-called Black Monday of 1987, when 

crucial discrepancies with real prices occurred. The authors propose that relativistic physics is 

capable of helping to solve these problems, obviously at a cost. In their work, they try to emphasize 

the role of relativistic physics in the field of financial mathematics and to propose some observations 

and ideas that could help this field in its further development. 

A classic work on the subject is that of Dunkel J.et al (2009), according to the author, the 

mathematical description of stochastic processes has led to new approaches in other fields. Within 

the framework of special relativity, the authors review recent advances in the phenomenological 

description of relativistic diffusion processes. According to the author, given that the speeds of 

relativistic particles are limited by the speed of light, non-trivial relativistic Markov processes in 

space-time do not exist; in other words, the relativistic generalizations of the non-relativistic 

diffusion equation and its Gaussian solutions must necessarily be non-Markovian. 

In Trzetrzelewski M. (2017) the Black-Scholes equation is revised and after a coordinate 

transformation it finds its equivalence to the heat equation and also its relativistic extension with the 

known telegrapher equation, which can also be derived from the Euclidean version of the Dirac 

equation. Therefore, the relativistic extension of the Black-Scholes model, particularly in the case of 

European options, derives quite naturally from relativistic quantum mechanics. 

Like the ideas of the triumph of relativistic mechanics over classical mechanics when speeds 

approach the speed of light, the authors explore an improvement in Black-Scholes option prices and 

a respective solution in Qu Y. et al (2017).  

The author shows a solution with a significant improvement over other  solutions and obtains 

a new closed-form option pricing formula, which contains the speed limit of information transfer (the 

speed of light c) as a new parameter. It also shows how the new formula converges with the Black-

Scholes formula when c tends to infinity, the new formula can flatten the well-known volatility smile, 

which is more consistent with empirical observations.  

In Carvalho V.H. et al (2021) is mentioned that the exchange of information is increasingly 

faster and will eventually approach the speed of light. Due to advances in high-frequency trading, the 

author suggests the need to consider the effects of the theory of relativity on financial models. Time 

and space, in certain circumstances, are not dissociated and cannot longer be interpreted as 

Euclidean. The paper provides an overview of research in this field while formally defining the key 

notions of space-time, proper time and an understanding of how time dilation affects financial 

models. They also illustrate how special relativity modifies the price of options and hedging, 

according to the Black-Scholes model, when market participants are in two different frames of 

reference. In particular, the relativistic effects of maturity and volatility are analyzed. 

According to Romero J.M. et al (2016), the Klein-Gordon equation is used to propose a 

generalized Black-Scholes equation. In their work, they find that in the limit the generalized equation 

is invariant under conformal transformations, in particular invariant under scale transformations. In 

this limit, it is shown that the distribution of stock prices is given by a Cauchy distribution, rather 

than a normal distribution. 
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In Johnson J. et al (2012) makes it clear that society's drive towards ever faster, more technical 

systems makes it urgent to understand more and more the threat posed by “black swan” extreme 

events .  

According to the author, in May 2010, it took just five minutes for a spontaneous mix of 

human and machine interactions in global commercial cyberspace to generate an unprecedented 

system-wide Flash Crash. However, little is known about what lies ahead in the event that humans 

become unable to respond or intervene quickly enough. Their work analyzes thousands of ultra-fast 

black swan events that have been discovered in stock price movements between 2006 and 2011.  

Wissner Gross A.D. (2010) mentions that recent advances in high-frequency financial trading 

have made slight delays in propagation between geographically separated exchanges relevant. The 

authors show that there are optimal locations from which to coordinate statistical arbitrage of 

spatially separated security pairs and calculate an ideal map representative of such locations on 

Earth. Furthermore, local trading along chains of intermediate locations results in a novel effect, in 

which the relativistic propagation of tradable information is effectively retained or stopped by 

arbitrage. 

 

3. Stylized facts 
 

According to Buchanan (2015), technological advantages are becoming increasingly important in 

competition in trading or financial trading, both in the number of operations (100,000 per second) 

and in the speed of communication, for example with the use of fiber optics where information travels 

at 2/3 of the speed of light in a vacuum. It is worth mentioning the time taken for operations between 

London and New York, which is 2.6 milliseconds, or a network of military-grade lasers that has been 

installed to connect the financial centers of New York, New Jersey, London and Frankfurt. In other 

words, it is important to consider the advantages that technology offers.  

High-frequency trading relies on the speed of algorithms and computers to know when to 

buy and/or sell and feeds on the same market data. However, some companies claim that there is 

unequal access to extreme speed that erodes trade equity among participants. Besides High-

frequency trading provides liquidity to markets, making it easier for investors to find trading 

partners at reasonable prices and also to equalize the difference between the prices at which one can 

buy or sell from the markets, that is, it helps to synchronize prices in all markets.  

According to Buchanan (2015), the nature of financial market operations is very different 

today to how they were in the past, rather than reflecting the collective decisions of people, they 

combine the behavior of complex networks, electronic communications and their interactions with 

humans. 

The problem is potentially increasing globally as high-frequency trading has moved to 

international markets for derivatives and other assets and practically including all industries, 

including energy and food, insurance and banking.  

Therefore, in global financial markets there is an urgent need to develop important strategic 

models (the derivatives market) and predictive simulation capabilities, comparable to global-scale 

meteorological monitoring.  
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4. The Model 
 
In the next section we will start by recalling the basic concepts of financial options and the Black-

Scholes equation. In the second part we will review the equivalence between this equation and 

another fundamental physics equation, the Schrödinger equation. Subsequently, the Dirac equation, 

or relativistic version of the latter equation, will be derived, but first there will be a brief introduction 

to the concepts of special relativity.Option contracts are generically known as derivatives or 

contingent liabilities. Remember that an option is a contract that gives the holder the right, but not 

the obligation, to buy or sell a certain asset at an agreed price at a fixed point in the future. In 

particular, an european call option with an exercise price K, expiring at T and on an underlying S, is 

a contract that gives the right to buy the underlying asset at a price K at time T; in the case of a put 

option, it gives the right to sell. 

The Black-Scholes equation (Black, Scholes (1973)) is a parabolic partial differential linear 

equation with values on the boundary. This equation assumes that the behavior of the underlying 

associated with the derivative can be modeled in its stochastic term with a Brownian motion and for 

its derivation it makes use of at least two basic finance concepts: hedging and no-arbitrage. 

The reduction of uncertainty or randomness is known as hedging and an elimination of risk 

using a portfolio of two instruments (an option and its underlying) is known as delta hedging. Once 

the risk-free return of the previous portfolio is known, it should be equal to the return of a bank 

account paying a certain fixed interest rate. For the deduction of the Black-Scholes model, we arrive 

at2:  

 
𝜕𝐶(𝑆,𝑡)

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝐶(𝑆,𝑡)

𝜕𝑆2 + 𝑟𝑆
𝜕2𝐶(𝑆,𝑡)

𝜕𝑆
− 𝑟𝐶(𝑆, 𝑡) = 0                                                                    (1) 

 where C= C(t, S) is the derivative of an underlying S with boundary condition, for 

call and put : 

 

𝐶(𝑡, 𝑆)  =  𝑀𝑎𝑥(𝑆 − 𝐾, 0)                                                                                                            (2 a) 

𝑃(𝑡, 𝑆)  =  𝑀𝑎𝑥(𝐾 − 𝑆, 0)                                                                                                            (2 b)                                                                                                                       

whose solution for  european call and put option at any 0 ≤ 𝑡 ≤ 𝑇 strike price K, maturity T, 

variance 𝜎 and risk-free rate r, is given by:  

 

𝐶(𝑆(𝑡), 𝑡) = 𝑆(𝑡)𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)                                                                            (3 a) 

𝑃(𝑆(𝑡), 𝑡) = 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(−𝑑2) − 𝑆(𝑡)𝑁(−𝑑1)                                                                     (3 b) 

 

where  

 

𝑑1 =
ln(

𝑆(𝑡)

𝐾
)+(𝑟+

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
                                                                                                            (4 a)   

𝑑2 =
ln(

𝑆(𝑡)

𝐾
)+(𝑟−

1

2
𝜎2)(𝑇−𝑡)

𝜎√𝑇−𝑡
                                                                                                            (4 b) 

 
2 With the assumptions: risk-free rate and constant volatility, no transaction costs and no arbitrage opportunities 
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On the other hand, one of the fundamental equations of physics in the area of quantum 

mechanics that describes the behavior of a free particle is the Schrödinger equation expressed below 

(following the work of Romero J.M. et al (2016)). 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2𝜓

𝜕𝑥2                                                                                                                             (5) 

 

where m is the mass of the particle, ℏ is Planck's constant and 𝜓(𝑥, 𝑡) is the wave function 

(which is the basis for determining the probability of position of a subatomic particle). If we apply 

the following mapping, 𝑡̃ = 𝑖𝑡, ℏ = 1, 𝑚 =
1

𝜎2 , 𝑥 = 𝑙𝑛𝑆 then we have  

𝜓(𝑥, 𝑡) = 𝑒
−(

1

𝜎2(
𝜎2

2
−𝑟)𝑥+

1

2𝜎2(
𝜎2

2
+𝑟)

2

𝑡)
𝐶(𝑥, 𝑡)                                                                                (6) 

In other words, we can go from Schrödinger's free particle equation to the Black Scholes 

equation. 

Considering that the case 𝑚 ⟶ 0 it is not studied within traditional quantum mechanics, but 

it is within relativistic quantum mechanics, the Schrödinger equation is transformed into the well-

known Klein-Gordon equation  

−
ℏ2

𝑐2

𝜕2𝜓(𝑥,𝑡)

𝜕𝑡̃2 +
𝜕2𝜓(𝑥,𝑡)

𝜕𝑥2 − 𝑚2𝑐2𝜓(𝑥, 𝑡) = 0                                                                                  (7) 

where  c is the speed of light, and we note that when 𝑚 ⟶ 0 the Klein-Gordon equation makes 

sense and when the Schrödinger equation is recovered. On the other hand, following the following 

mapping , 𝑡̃ = 𝑖𝑡, ℏ = 1, 𝑚 =
1

𝜎2 , 𝑥 = 𝑙𝑛𝑆, 𝑐2 = 𝑞  

𝜓(𝑥, 𝑡) = 𝑒
−(

1

𝜎2(
𝜎2

2
−𝑟)𝑥+(

1

2𝜎2(
𝜎2

2
+𝑟)

2

−
𝑞

𝜎2)𝑡)
𝐶(𝑥, 𝑡)                                                                       (8)    

 

we arrive at the also known Klein - Gordon equation 

 

1

𝑞

𝜕2𝐶(𝑆,𝑡)

𝜕𝑡2    (
2

𝜎2 −
1

𝑞𝜎2 (
𝜎2

2
+ 𝑟)

2

) 
𝜕𝐶(𝑆,𝑡)

𝜕𝑡
+ 𝑆2 𝜕2𝐶(𝑆,𝑡)

𝜕𝑆2 +
2𝑟

𝜎2 𝑆
𝜕𝐶(𝑆,𝑡)

𝜕𝑆
+  

+ [
1

4𝑞𝜎4 (
𝜎2

2
+ 𝑟)

4

−
2𝑟

𝜎2] 𝐶(𝑆, 𝑡) = 0                                                                                                      (9)       

                                                              

which can be rewritten as follows  

𝜎2

2𝑞

𝜕2𝐶(𝑆,𝑡)

𝜕𝑡2  +  (1 −
1

2𝑞
(

𝜎2

2
+ 𝑟)

2

) 
𝜕𝐶(𝑆,𝑡)

𝜕𝑡
= −

𝜎2

2
𝑆2 𝜕2𝐶(𝑆,𝑡)

𝜕𝑆2 − 𝑟𝑆
𝜕𝐶(𝑆,𝑡)

𝜕𝑆
+ 𝑟𝐶(𝑆, 𝑡)               (10) 

equation (10) in the limit when 𝑞 ⟶ ∞ we recover the Black Scholes equation. In the 

following paragraphs, some of the basic concepts of special relativity will be recalled. In order to be 

able to propose a relativistic quantum mechanics equation, the deduction will be followed according 

to Trzetrzelewski, M. (2017)). 

The special theory of relativity is a result of the facts of natural things, which are not 

observable in classical mechanics and is based on two postulates3 

 
3 3 The special theory of relativity was developed by Albert Einstein and revolutionized the traditional concepts of classical physics 

Einstein A.(1905) 
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i) The principle of relativity, which states that the laws of nature are invariant in all inertial reference 

frames 

ii) The principle of constant velocity and specifically that the speed of light in a vacuum is finite and 

equal in all reference frames 

The invariance of natural laws in all inertial reference frames comes from the observation 

that in all such frames, all experiments with these laws have the same results4 . 

It is important to determine the relationship between a reference system S and one S´ that 

moves at a constant velocity 𝜈  relative to the first. Let us suppose that the movement, without losing 

generality, is in the particular direction of the X axis, which has traditionally been explained by 

Galileo's transformations. More generally, as a consequence of the postulates in special relativity, it 

is given by the Lorentz transformation, and corresponds to the following expressions for the 

relationship between position and time (Blaho R. (2021)): 

𝑥´ = 𝛾(𝑥 − 𝜐𝑡)                                                                                                                              (11) 

𝑡´ = 𝛾 (𝑡 −
𝜐𝑥

𝑐2)                                                                                                                              (12) 

with  𝛾 =
1

√1−
𝜈2

𝑐2

 

In tensorial terms, a vector in this space known as Minkowski space can be defined by a 

contravariant vector 

𝑥𝛼 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑐𝑡, 𝑥, 𝑦, 𝑧) 

It is the contravariant version of a vector called an event, the covariant version is defined by 

the following: 

𝑥𝛼 = 𝑔𝛼𝛽𝑥𝛽 

where 𝑔𝛼𝛽 represents the metric tensor in Minkowski space. On the other hand, if we assume 

that we have a clock at the origin of the reference system S and in S´ and at the beginning they coincide 

at  t = t´ = 0 , given a certain signal the system S´ begins to move with 𝜈 velocity in the direction X, for 

to simplify and without losing generality. Now a time interval from the beginning of translation 

between S and S´  

∆𝑡 = 𝛾∆𝑡´                                                                                                                                          (13) 

and proper time ∆𝜏 = ∆𝑡´ is defined as the invariant quantity that always represents the 

shortest time compared to all possible reference times. The special meaning in special relativity is 

the so-called space-time interval, which represents the distance between two events in Minkowski 

space, which is an invariant in Lorenz space. 

(∆𝑆)2 = (𝑐∆𝑡)2 − ∆2𝑥 − ∆2𝑦 − ∆2𝑧                                                                                          (14) 

(∆𝑆)2 = (𝑐∆𝜏)2                                                                                                                               (15) 

With a constant speed of light, it gives another useful formulation of prototype time that is 

also invariant ∆𝜏 = ∆𝜏´  in spacetime for any inertial reference system. In Minkowski space, the 

quadri-acceleration of a particle is defined where ds is the infinitesimal version of the original 

spacetime ∆𝑆  

𝑢𝛼 ∶=
𝑑𝑥𝛼

𝑑𝜏
= 𝑐

𝑑𝑥𝛼

𝑑𝑠
                                                                                                            (16)                                                                                  

and the second derivative with respect to proper time gives us the quadri-acceleration 

 
4 The second postulate was verified with the results of the Michelson-Morley experiment of 1887. 
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𝑎𝛼 ∶=
𝑑𝑢𝛼

𝑑𝜏
= 𝑐

𝑑𝑢𝛼

𝑑𝑠
                                                                                                                           (17) 

and also for  the quadri-momentum 

𝑝𝛼 ∶= 𝑚0𝑢𝛼= 𝑚0(𝛾𝑐, 𝛾𝜐)                                                                                                              (18) 

using the expression for the mass of a particle 

𝐸 = 𝑚𝑐2 = 𝑚0𝛾𝑐2                                                                                                                         (19) 

and we obtain another formulation used 

𝑝𝛼 = (
𝐸

𝑐
, 𝒑)                                                                                                                                     (20) 

and we have the moment of the quadri-moment 

𝑝𝛼𝑝𝛼 =
𝐸2

𝑐2 − 𝑝2 = 𝑚0
2𝑢𝛼𝑢𝛼 = 𝑚0

2𝑐2                                                                                        (21)                                                                       

where we use the fact that the norm of the quadri-velocity is equal to 𝑐2  and we obtain the famous 

energy-momentum relation 

𝐸2 = 𝑝2𝑐2 + 𝑚0
2𝑐4                                                                                                                        (22) 

In the following paragraphs, based on the previous sections, the Dirac equation is deduced 

(following the version of Estevez-Fernandez J., (2007)) which is the equivalent of the relativistic 

Schrödinger equation. We know that the Schrödinger equation is also a diffusion equation with a 

purely imaginary diffusion coefficient, if we rewrite the equation in this way 

𝑖ℏ𝜕𝑡𝜓 = 𝐻𝜓                                                                                                                                 (23) 

where the energy operator is defined as 

𝐸̂ = 𝑖ℏ𝜕𝑡                                                                                                                                       (24) 

and the Hamiltonian considering the kinetic energy term is 

𝐻 =
𝑝2

2𝑚
= −

ℏ2

2𝑚
∇2                                                                                                                     (25) 

the Schrödinger equation is not relativistic and considers the first-order time derivative and 

the second-order spatial derivative, while in Special Relativity, as the coordinates play the same role, 

the derivatives must be of the same order, so the following options are available: (Estevez-Fernandez 

J., (2007)) 

1. Klein-Gordon equation: Both derivatives are second order  

(𝜕𝜇
2 + 𝜇2)𝜓 ≡ ( 𝜕𝜇

2
2

+ 𝜇2) 𝜓                                                                                             (26)                                                    

with the problem that probability |𝜓|2can become negative and energy E can also become negative. 

2. Dirac equation: where both derivatives are first order 

(𝜕𝜇 + 𝜇2)𝜓 = 0                                                                                                                      (27) 

with the drawback that energy can be negative (and as a consequence antimatter can appear). 

We will now review the second case, which corresponds to Dirac's equation. The energy-momentum 

relation in Special Relativity gives the invariant of the quadri-momentum (which we already had in 

equation (22)), substituting the quantum operators knowing that the energy operator is defined by 

the Schrödinger equation gives 

(𝑖ℏ𝜕𝑡)2 = (−𝑖ℏ𝑐∇)2 + (𝑚𝑐2𝕀)2                                                                                                 (28) 

the Schrödinger equation tells us that the second member is the Dirac term, Hamiltonian 

squared, where the Dirac equation is simply the Schrödinger equation whose Hamiltonian is the 

Dirac Hamiltonian, that is,  
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𝐻2 = (−𝑖ℏ𝑐∇)2 + (𝑚𝑐2𝕀)2 

where the most general Hamiltonian that fulfills the previous equation is: 

𝐻 = 𝛼 ̅(−𝑖ℏ𝑐∇) + 𝛽𝑚𝑐2𝕀                                                                                                             (29) 

where 𝛼̅ ≡ (𝛼1,𝛼2,𝛼3) is not necessarily a vector but has 3 components 𝛽 and is not 

necessarily a scalar but has 1 component (under Lorentz transformations). Then  

𝐻2 = 𝛼 ̅𝛼 ̅(−𝑖ℏ𝑐∇) ∙ (−𝑖ℏ𝑐∇) + 𝑚𝑐2(𝛼 ̅𝛽 + 𝛽𝛼 ̅)(−𝑖ℏ𝑐∇) + 𝛽2(𝑚𝑐2)2                            (30) 

performing the scalar products and separating, we arrive at 

𝐻2 = ∑ 𝛼𝑖
2(−𝑖ℏ𝑐𝜕𝑥𝑖

)
23

𝑖=1 + ∑ (𝛼𝑖𝛼𝑗 + 𝛼𝑖𝛼𝑗)3
𝑗<𝑖=1 (−𝑖ℏ𝑐𝜕𝑥𝑖

)(−𝑖ℏ𝑐𝜕𝑥𝑖
) + ∑ 𝑚𝑐2(𝛼𝑖𝛽 +3

𝑖=1

𝛽𝛼𝑖)(−𝑖ℏ𝑐𝜕𝑥𝑖
) + 𝛽2(𝑚𝑐2)2                                                                                                        (31) 

comparing the equations we obtain the conditions that the elements we have introduced in 

the Dirac Hamiltonian have to fulfill. The elements that fulfill these properties belong to a Clifford 

algebra:  

1.𝛼𝑖
2 = 𝛽2 = 1                                                                                                                              (32 a) 

2.[𝛼𝑖, 𝛼𝑗] = 0. 𝑖 ≠ 𝑗                                                                                                                     (32 b) 

3[𝛼𝑖, 𝛽] = 0                                                                                                                                   (32 c) 

being a type of matrix that we will call Dirac gamma matrices, defining the Dirac gamma 

matrices we have 

𝛾0 ≡ 𝛽, 𝛾𝑖 ≡ 𝛽𝛼𝑖    

where  𝛾0 = (
𝕀 0
0 𝕀

) , 𝛾𝑗 = ( 0 𝜎𝑗

−𝜎𝑗 0
) 

are 𝜎𝑗 Pauli matrices, the Hamiltonian with this notation is 

𝐻 = (−𝑖ℏ𝑐)(𝛼1𝜕𝑥1
+ 𝛼2𝜕𝑥2

+ 𝛼3𝜕𝑥3
) + 𝛾0𝑚𝑐2𝕝                                                                  (33) 

and changing the notation of the derivatives for relativistic coordinates, the Dirac 

Hamiltonian is 

𝐻𝐷𝑖𝑟𝑎𝑐 = (𝑖ℏ𝑐𝛾𝑖𝜕𝑖 + 𝑚𝑐2𝕝)𝛾0                                                                                                    (34) 

Substituting this Hamiltonian in the Schrödinger equation 

𝑖ℏ𝑐𝛾0𝜕0𝜓 = −𝑖ℏ𝑐𝛾𝑖𝜕𝑖𝜓 + 𝑚𝑐2𝜓                                                                                             (35) 

Then we arrive at  

(𝑖ℏ𝑐𝛾𝜇𝜕𝜇 − 𝑚𝑐2)𝜓 = 0                                                                                                             (36) 

and by choosing the time scale appropriately we can always obtain ℏ = 𝑐 = 1, together with 

Feynman's slash notation we finally arrive at the Dirac equation 

 (𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓 = 0                                                                                                                       (37) 

As this equation allows for negative energies, in 1928 Paul Dirac postulated the existence of 

the antiparticle of the electron, the positron5 The wave functions in Dirac's equation are of a different 

nature to the wave functions in Schrödinger's equation and are called spinors.  

 

 
 
 

 
5 The positron was first discovered experimentally in 1932 by Carl David Anderson when photographing the channels of cosmic rays in a 
cloud chamber (only particles with mass are observed in the cloud chamber). 
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5. Proposed Model 
 
According to Trzetrzelewski M. (2017), since the emergence of algorithmic trading in the 1980s, 

changes in prices are generated in a matter of seconds or less, but with the limitation on changes in 

prices S(t) it cannot be arbitrary in time but there is a speed limit cm , S(t) < cm ( known as the speed 

of light in the market ), that is, the speed of information exchange is limited by the velocity of light 

(30 cm per nanosecond), which for practical purposes makes it very difficult to appreciate these 

relativistic effects. 

On the other hand, a characteristic of liquid markets where the price of an asset goes from 

S(t) to S (t + dt) within a short period of time introduces a natural concept that we could call friction 

(or resistance). This situation is similar to electrons moving in semiconductors where an electron 

can move at an arbitrary speed. Such as the speed light traveling in a medium with density where the 

speed of light is c/n where n is the refractive index (for example for diamond, water, glass and 

others).  

From what we have reviewed in the previous section, it is known that the Schrödinger 

equation in imaginary time for a free particle results in a diffusion equation, the correspondence is 

only formal but has no physical explanation, the mapping 𝑡 → −𝑖𝑡 . On the other hand, the mapping 

suggests that if one wanted to generalize the diffusion equation to the relativistic case one would use 

the Euclidean version of the Dirac equation as in the following diagram where (𝑣 is the speed and c 

is the speed of light). 
Dirac Equation → v ≪ c  Schrödinger Equation

↓ t → −it . ↓  t → −it
Euclidian Dirac Equation . Euclidian Dirac Equation

 

An object that satisfies Dirac's equation is a spinor with several components (in our case, 

(1+1) dimensions, the spinor has 2 real components), but the interpretations of those components 

are not clear in finance. However, there is a relationship between Dirac's Euclidean equation and  

stochastic processes. 

The generalization in relativity of the original brownian motion theory was recommended in 

V.A. Fock V.A. (1926) and the original diffusion equation came to be called the damped telegraph 

wave equation or telegraph equation. however, the first telegraphist equation occurred in 1854 by 

Lord Kelvin to study the propagation of electrical signals through the transatlantic cable, because the 

frame of reference of the telegraphist equation and the properties are crucial some important points 

are mentioned. This topic can review in Trzetrzelewski M.(2018) 

The telegrapher's equation is described below, which is very important in the development 

of the relativistic Brownian motion. 

Let be 𝜉(𝑥, 𝑡) an arbitrary function of a set of probability densities 𝑝+(𝑥, 𝑡), 𝑝−(𝑥, 𝑡) 𝑦 𝑏(𝑥, 𝑡), 

then 𝜉(𝑥, 𝑡) is a solution of the so-called telegrapher's partial differential equation in the form 
𝜕2𝜉(𝑥,𝑡)

𝜕𝑡2 + 2𝜆
𝜕𝜉(𝑥,𝑡)

𝜕𝑡
= 𝜈2 𝜕2𝜉(𝑥,𝑡)

𝜕𝑥2                                                                                      (38) 

where 𝑡 > 0, 𝑥 ∈ ℝ and with initial conditions  

𝑝±|𝑡=0 = 𝛿(𝑥)         
𝑑𝑝±

𝑑𝑡
|𝑡=0 = ∓𝜐𝛿′ (𝑥) 

𝑓|𝑡=0=b|𝑡=0
1

2
 𝛿(𝑥)   

𝑑𝑓

𝑑𝑡
|𝑡=0 = −

𝑑𝑏

𝑑𝑡
|𝑡=0 = −

𝜐

2
𝛿′ (𝑥) 
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Solving the equation for the probability density p(x,t) gives 

𝑝(𝑥, 𝑡) =
𝑒−𝜆𝑡

2𝜈
[𝛿(𝜐𝑡 + 𝑥) + 𝛿(𝜐𝑡 − 𝑥)] +

𝑒−𝜆𝑡

2𝜈
[𝜆𝐼0 (

𝜆

𝜐
√𝜐2𝑡2 − 𝑥2) +

𝜕

𝜕𝑡
𝐼0 (

𝜆

𝜐
√𝜐2𝑡2 − 𝑥2)] 𝕀|𝑥|<𝜐𝑡                                                                                    

(39)                                                              

For any 𝑡 > 0, 𝑥 ∈ ℝ   where I0(x) of note the modified Bessel function of the form 

𝐼0(𝑥) = ∑
1

𝑚!Γ(𝑚+1)
(

𝑥

2
)

2𝑚
= ∑

1

(𝑚!)2 (
𝑥

2
)

2𝑚
+∞
𝑚=0

+∞
𝑚=0                                                     (40)                                           

The most outstanding property of the probability distribution function 𝑝(𝑥, 𝑡)for the use of 

the Goldstein-Kac theory of the telegraph process in the generalization of the Black-Scholes theory 

which under certain conditions would converge to the probability distribution function of a Wiener 

process. 

The relativistic generalization of the original Black-Scholes theory is connected with two 

facts. The first of these has to do with the results of high-frequency trading in the market and 

therefore it is considered important to incorporate the principles of special relativity into the theory. 

The second point has to do with the volatility parameter in the Black-Scholes model, which is 

insufficient after what is known as Black Monday in 1987.  

According to the concept previously defined as the “speed of market light” cm.  It is assumed 

that if an underlying security has a spot price S(t) at time t, the change in the value of the spot S(t + 

dt) one time (dt ) later (not instantaneous) would follow the following expression  

𝜐𝑚 ≡ lim
∆𝑡→0

𝑆(𝑡+∆𝑡)−𝑆(𝑡)

∆𝑡
                                                                                                                    (41) 

With values less than +∞  and therefore 𝜐𝑚 < +∞  but also that it has an upper limit. The 

upper limit for such a speed is cm and the speed of the effective spot price has an analogy as 

mentioned above with the movement of electrons moving with an effective speed within a material 

which is much smaller than the maximum possible velocity that an electron can experience. This 

value, given by the speed of light in a vacuum c as the signal about the concrete change in the spot 

price transmitted at the speed of light in a vacuum and can also be interpreted as the desire of 

investors to buy or sell an underlying asset, is as follows 

|
𝑑𝑥(𝑡)

𝑑𝑡
| =

|
𝑑𝑆(𝑡)

𝑑𝑡
|

𝑆(𝑡)
<

𝑐𝑚

𝑆(𝑡)
< 1                                                                                                            (42) 

The objective is to find a probability distribution 𝑝𝑟(𝑥, 𝑡) that will be used as an integration 

kernel (that is, a financial propagator) in a Feymann-Kac risk-neutral valuation formula, that is 

 

𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟(𝑇−𝑡) ∫ 𝑓(𝑥(𝑇), 𝑇|𝑥(𝑡), 𝑡)𝑔(𝑥(𝑇))𝑑𝑥(𝑇)
+∞

−∞
                                          (43 a) 

or in another  variable of the same spot price 𝑆(𝑡) = 𝑒𝑥 as 

𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟(𝑇−𝑡) ∫ 𝑓(𝑆(𝑇), 𝑇|𝑆(𝑡), 𝑡)𝑔(𝑆(𝑇))
𝑑𝑆(𝑇)

𝑆(𝑇)

+∞

0
                                            (43 b) 

which we can rewrite 

𝐶(𝑆(𝑡), 𝑡) = 𝑒−𝑟(𝑇−𝑡) ∫ 𝑓(𝑥(𝑆(𝑡)), 𝑇 − 𝑡)𝑔(𝑆(𝑇))
𝑑𝑆(𝑇)

𝑆(𝑇)

+∞

0
                                            (43 c) 

where  

𝑥(𝑆(𝑇)) = 𝑙𝑛 (
𝑆(𝑡)

𝑆(𝑇)
− + (𝑟 −

1

2
𝜎2) (𝑇 − 𝑡))                                                                      (44) 

the relativistic generalization of Schrödinger's equation, as mentioned above,  is Dirac's 

equation in 1 dimension for position and 1 dimension for time. In the following, it will be shown that 
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that equation is equivalent to Kolmogorov's equations from the previous section and therefore 

equivalent to the telegrapher's equation. 

For another hand, following Blaho R. (2021) Let us remember that Dirac's equation (eq. 37) 

in (1+1) dimension has the following expression 

(𝑖ℏ𝛾𝜇𝜕𝜇 − 𝑚0𝑐)𝜓(𝑥, 𝑡) = 0                                                                                                      (45) 

with 𝛾𝜇 the gamma matrices, however, in this case the Greek indices represent a two-

dimensional analogy to four-dimensional Minkowski space i.e. 𝜇 ∈ {0,1} developing the notation we 

obtain and multiplying by the speed of light (c) in a vacuum.  

(𝑖𝑐ℏ𝛾0𝜕0 + 𝑖𝑐ℏ𝛾1𝜕1 − 𝑚0𝑐2)𝜓(𝑥, 𝑡) = 0                                                                             (46) 

finally we are developing the gradient notation and with the intention of obtaining the Dirac 

equation (1+1), the equation is multiplied by the matrix 𝛾0−1
 by and accommodating terms 

𝑖ℏ
𝜕𝜓(𝑥,𝑡)

𝜕𝑡
= 𝑚0𝑐2𝛾0−1

𝜓(𝑥, 𝑡) − 𝑖𝑐ℏ(𝛾0−1
𝛾1)

𝜕𝜓(𝑥,𝑡)

𝜕𝑥
                                                            (47) 

that have the same form as the Dirac equation (1+1) that can be seen in the previous sections. 

This derivation is crucial, which is not explicitly done from both sources, the last but not least 

important thing is to establish the following correspondence 

𝛾0−1
= 𝜎1 , 𝛾0−1

𝛾1 = 𝜎3 

to obtain the equation as it can be read with the Pauli matrices in the form 

𝜎1 = (
0 1
1 0

) 𝜎3 = (
1 0
0 −1

) 

and equation of (1+1) Dirac has the form of the  

𝑖ℏ
𝜕𝜓(𝑥,𝑡)

𝜕𝑡
= (−𝑖𝑐ℏ𝜎3

𝜕

𝜕𝑥
+  𝜎1𝑚0𝑐2) 𝜓(𝑥, 𝑡)(𝑥, 𝑡)                                                                   (48) 

with the Dirac spinor 

𝜓(𝑥, 𝑡) = (
𝜓+(𝑥, 𝑡)

𝜓−(𝑥, 𝑡)
)                                                                                                                     (49) 

it must be verified that the relations satisfied with Clifford algebra, if one exploits the 

relations, the multiplication of simple matrices gives {𝛾𝜇 , 𝛾𝜈} = 2𝑔𝜇𝜈𝕝2𝑥2 

𝛾0 = 𝜎1                                                                                                                                          (50 a) 

𝛾1 = 𝜎1𝜎3                                                                                                                                      (50 b) 

using the Pauli matrices given the results, now then the Dirac equation in (1+1) dimensions 

can be obtained, one can change the variables to be able to get the telegraph equation, using 

𝑢(𝑥, 𝑡) = 𝑒
𝑖𝑚0𝑐2𝑡

ℏ 𝜓(𝑥, 𝑡)    o bien   𝜓(𝑥, 𝑡) = 𝑒
−𝑖𝑚0𝑐2𝑡

ℏ 𝑢(𝑥, 𝑡)                                                        (51)    

We insert this expression of the coupled (1+1) Dirac equation for the system for each 

component of Dirac spinor in the form 

𝑖ℏ
𝜕𝜓+(𝑥,𝑡)

𝜕𝑡
= −𝑖𝑐ℏ

𝜕𝜓+(𝑥,𝑡)

𝜕𝑥
+  𝑚0𝑐2𝜓−(𝑥, 𝑡)                                                                          (52 a)       

𝑖ℏ
𝜕𝜓−(𝑥,𝑡)

𝜕𝑡
= +𝑖𝑐ℏ

𝜕𝜓−(𝑥,𝑡)

𝜕𝑥
+  𝑚0𝑐2𝜓+(𝑥, 𝑡)                                                                          (52 b) 

result 
𝜕𝑢+(𝑥,𝑡)

𝜕𝑡
= −𝑐

𝜕𝑢+(𝑥,𝑡)

𝜕𝑥
+

𝑖𝑚0𝑐2

ℏ
(𝑢+(𝑥, 𝑡) − 𝑢−(𝑥, 𝑡))                                                             (53 a) 

𝜕𝑢−(𝑥,𝑡)

𝜕𝑡
= +𝑐

𝜕𝑢−(𝑥,𝑡)

𝜕𝑥
+

𝑖𝑚0𝑐2

ℏ
(𝑢−(𝑥, 𝑡) − 𝑢+(𝑥, 𝑡))                                                             (53 b) 
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which are the Kolmogorov equations of Goldstein-Kac's theory of the telegraph process with 

imaginary intensity coefficient given by 𝜆 = −
𝑖𝑚0𝑐2

ℏ
, the velocity of the particle denoted by c, the 

point is that the intensity of the stochastic process should be a real number instead of an imaginary 

number. This can be resolved when additional transformations are introduced, that is, the 

transformation of time and Wick's rotation 𝑡̅ = 𝑖𝑡 together with the Euclidean introduction of the 

speed of light 𝑐̅ = 𝑖𝑐 and transiting in the Euclidean world. If one applies this notation, one obtains 
𝜕𝑢+(𝑥,𝑡̃)

𝜕𝑡̃
= −𝑐̃

𝜕𝑢+(𝑥,𝑡̃)

𝜕𝑥
+

𝑚0𝑐̃2

ℏ
(𝑢+(𝑥, 𝑡̃) − 𝑢−(𝑥, 𝑡̃))                                                        (54 a)                                  

𝜕𝑢−(𝑥,𝑡̃)

𝜕𝑡̃
= +𝑐̃

𝜕𝑢−(𝑥,𝑡̃)

𝜕𝑥
+

𝑚0𝑐̃2

ℏ
(𝑢−(𝑥, 𝑡̃) − 𝑢+(𝑥, 𝑡̃))                                                        (54 b) 

we can see the equivalence between Dirac's equation (1+1) and Kolmogorov's equation with 

the telegrapher's equations and there is equivalence between Schrödinger's equations and the 

classical diffusion equation. To complete we write of telegraphers for each component separately 

−
𝜕2𝑢+(𝑥,𝑡)

𝜕𝑡2 − 𝑐2 𝜕2𝑢+(𝑥,𝑡)

𝜕𝑥2 = +2
𝑖𝑚0𝑐2

ℏ

𝜕𝑢+(𝑥,𝑡)

𝜕𝑡
                                                                         (55 a) 

−
𝜕2𝑢−(𝑥,𝑡)

𝜕𝑡2 − 𝑐2 𝜕2𝑢−(𝑥,𝑡)

𝜕𝑥2 = +2
𝑖𝑚0𝑐2

ℏ

𝜕𝑢−(𝑥,𝑡)

𝜕𝑡
                                                                         (55 b) 

in the limit 𝑐 → +∞ one recovers the classical diffusion equation equivalent to Schrödinger's 

equation for example with the component 𝑢+(𝑥, 𝑡)one obtains 

−
𝜕2𝑢+(𝑥,𝑡)

𝜕𝑥2 = +2
𝑖𝑚0

ℏ

𝜕𝑢+(𝑥,𝑡)

𝜕𝑡
                                                                                                         (56) 

finally dividing the last equation by 2m0 together with the multiplication of ℏ2 we have 

−
ℏ2

2𝑚0

𝜕2𝑢+(𝑥,𝑡)

𝜕𝑥2 = +𝑖ℏ
𝜕𝑢+(𝑥,𝑡)

𝜕𝑡
                                                                                                      (57) 

which is a non-relativistic diffusion equation with arranged coefficients (again with an 

imaginary diffusion coefficient one would simply do Wick rotation) and again incorporating the wave 

equation of the equivalent probability density one obtains 

−
ℏ2

2𝑚0

𝜕2𝜓+(𝑥,𝑡)

𝜕𝑥2 = +𝑖ℏ
𝜕𝜓+(𝑥,𝑡)

𝜕𝑡
                                                                                                     (58) 

which is the non-relativistic Schrödinger equation of quantum mechanics, if the equivalence 

between the (1+1) dimensional Dirac equation for particles with spin 0 and the telegraph equation 

is used, through the already known Kolmogorov equation, the original normal Gaussian distribution 

of a Wiener process is obtained as a solution of the classical diffusion equation which handles the 

evolution of the underlying asset price of the Black Scholes equation model having to be substitutes 

for 

𝑝𝑟(𝑥, 𝑡) =
𝑒−𝜆𝑡

2𝑐𝑚
[𝛿(𝑐𝑚𝑡 + 𝑥) + 𝛿(𝑐𝑚𝑡 − 𝑥)] +

𝑒−𝜆𝑡

2𝑐𝑚
[𝜆𝐼0 (

𝜆

𝑐𝑚
√𝑐𝑚

2 𝑡2 − 𝑥2) +

𝜕

𝜕𝑡
𝐼0(

𝜆

𝑐𝑚
√𝑐𝑚

2 𝑡2 − 𝑥2)] 𝕀|𝑥|<𝑐𝑚𝑡                                                                                                         (59) 

this equation is already relativistic and is in agreement with the telegraph equation it does 

not allow the particle in higher positions 𝑥 > 𝑐𝑚𝑡 where 𝑐𝑚 denotes the speed of light in the market. 

Using the transformation of the variable in the limit 𝜆 =
𝑐𝑚

2

𝜎2  and with an asymptotic expansion one 

arrives at the following representation 𝑝(𝑥, 𝑇 − 𝑡) 

𝑝𝑟(𝑥, 𝑇 − 𝑡)  ≈
𝑒

−
𝑥2

2𝜎2(𝑇−𝑡)

√2𝜋𝜎2(𝑇−𝑡)
(1 +

1

𝑐𝑚
2 𝑓𝑟(𝑥, 𝑇 − 𝑡))                                                                     (60) 

with 
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𝑓𝑟(𝑥, 𝑇 − 𝑡) = −
𝜎2

8(𝑇−𝑡)
+

𝑥2

2(𝑇−𝑡)
−

𝑥4

8𝜎2(𝑇−𝑡)3                                                                              (61) 

the easiest way to see that the subsequent expansion is valid following the following fact 

𝐼0(𝑎) ≈
𝑒𝑎

√2𝜋𝑎
(1 +

1

8𝑎
)                                                                                                                   (62) 

Keeping for 𝑎 ≫ 1the argument 
𝜆

𝑐𝑚
√𝑐𝑚

2 𝑡2 − 𝑥2 = √1 −
𝑥2

𝑡𝑐𝑚
2  in the  limit 𝑐𝑚 → +∞ 𝜆 → +∞ in 

certainly greater using the Taylor expansion we obtain the last expression which is to consider the 

function 
𝜆

𝑐𝑚
√𝑐𝑚

2 𝑡2 − 𝑥2 ≈ 𝜆𝑡 −
𝜆𝑥2

2𝑐𝑚
2 𝑡

−
𝜆𝑥4

8𝑐𝑚
4 𝑡3                                                                                         (63)               

the way in which one could use the Taylor expansion to obtain the function 𝑓(𝑎) = √1 − 𝑎, 

the second order Taylor expansion for this function in the variable  around the point a = 0 one has 

𝑓(𝑎) ≈ 1 −
𝑎

2
−

𝑎2

8
                                                                                                                        (64) 

substituting gives 𝑎 =
𝑥2

𝑡𝑐𝑚
2  the desired result, the reason for why one takes the expansion 

coefficient putting the second order in the effect, which higher order terms does not include the speed 

of light in the market 𝑐𝑚 only in the denominator and this is not important. Then the Black Scholes 

formula generalization with the subsequent expansion of the probability distribution of the telegraph 

operator has the form 

𝐶(𝑆(𝑡), 𝑡) =
𝐾𝑒−𝑟(𝑇−𝑡)

√2𝜋𝜎2(𝑇−𝑡)
∫ ((𝑒𝑦 − 1)𝑒

−
(𝑥−𝑦)2

2𝜎2(𝑇−𝑡))
𝑦𝑚𝑎𝑥

0
(1 −

1

𝑐𝑚
2 𝑓(𝑦, 𝑇 − 𝑡)) 𝑑𝑦                   (65) 

𝑥(𝑆(𝑡)) = ln
𝑆(𝑡)

𝐾
+ (𝑟 −

1

2
𝜎2) (𝑇 − 𝑡)                                                                                       (66) 

where we change the integration variables for convenience, the upper integration limit and 

ymax max is implicitly given by which 𝑓(𝑦𝑚𝑎𝑥 , 𝜏) = 𝑐𝑚
2  has four solutions, however only one of them 

is real and positive 

𝑦𝑚𝑎𝑥 = √2𝜎2(𝑇 − 𝑡) + 𝜎(𝑇 − 𝑡)√3𝜎2 + 8𝑐𝑚
2 (𝑇 − 𝑡)                                                         (67) 

at the limit 𝑐𝑚 → ∞ we have 𝑦𝑚𝑎𝑥 → ∞ and the integral converges to the Black Scholes 

expression. In this case 𝑐𝑚 the integral becomes a little more complicated because the exponential 

dampens the integrand. We can approximate the integral by assuming that 𝑦𝑚𝑎𝑥 = ∞,  , then the 

negligible error compared to the corrections will be introduced 1/𝑐𝑚
2 . The final result is relatively 

simple in terms of standard parameters d1 and d2 known 

𝐶(𝑆(𝑡), 𝑇 − 𝑡) = 𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑆𝑁(𝑑2) +
1

𝑐𝑚
2 𝜐                                                        (68) 

𝑑1 =
𝜎2(𝑇−𝑡)+𝑥

𝜎√𝑇−𝑡
 , 𝑑2 =

𝑥

𝜎√𝑇−𝑡
                                                                                                      (69)           

𝜐 = −
𝜎2

8(𝑇 − 𝑡)
[𝑆𝑀(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑀(𝑑2)] − 

𝑆𝜎2

8√2𝜋(𝑇−𝑡)
𝑒−

𝑑1
2

2 (1 +
3

2
𝑑1

2 +
3

2
𝑑2

2 −
1

2
𝜎2(𝑇 − 𝑡))                                                              

           where 

𝑀(𝑧) ∶= 𝑁(𝑧)𝑧2(𝑧2 + 2),    𝑁(𝑧) =
1

√2𝜋
∫ 𝑒−

𝑡2

2
𝑧

−∞
𝑑𝑡                                                          (70) 
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6. Results 
 

In the previous section, we reviewed the generalization of the Black-Scholes equation to the 

relativistic version and where it requires the use of concepts and techniques developed within 

quantum and relativistic physics, the physical and mathematical ideas and techniques within their 

own disciplines represent a challenge in their understanding and application, even more so within a 

completely different area. 

From equations (68), (69) and (70) it can be seen that the solution for determining the 

premium of a call option is very similar to the classical model but with a correction term associated 

with the speed of information transfer or speed of light in the market. 

If this transmission speed is very close to the speed of light and the distances involved are on 

a terrestrial scale, the effects will be practically almost imperceptible, that is to say, if and the 

correction term disappears.  

However, the term cm (the speed of information) does not only involve the speed of light 

itself, but also the medium in which it is transmitted, considering fiber optics, microwaves, lasers and 

communication via the internet and within computers themselves. This speed of light in the market 

can give small advantages in financial trading and generate arbitrage opportunities. 

Below we made  an exercise in which we assume that the prices of financial options in the 

market are known and we assume a percentage lower than their value (due to the delay in 

information) and we look for the implicit value of the speed of light in the market that it would have 

to have to generate that price. Below are the results for the call and put in an exercise that is done for 

certain values, without losing generality. 

 

 

 
Figure 1. Implied value of the speed of light cm for a Call option (S=18, K=20, T=1, r = 0.04, 𝜎=0.20) 

Source: Own elaboration 
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Figure 1 Implied value of the speed of light cm for a Put option (S=18, K=20, T=1, r=0.04, 𝜎=0.20) 

Source: Own elaboration 

 

 

4. Conclusions 
 

This section presents the main conclusions of this work: 

Although the ideas of hedging against market uncertainty are old, it was not until the arrival 

of the Black-Scholes equation that it was considered a consistent and practical methodology for the 

valuation of call and put type hedging options. The results have been extended in various directions 

including fitting models with Poisson jumps, Levy processes, volatility adjustments models, always 

with the aim of improving their valuation estimates of these derivatives, the work presents a 

relativistic Black Scholes equation that has been well known. 

To extend the Black Scholes concepts to include the ideas of special relativity, it is necessary 

to incorporate ideas from physics such as quantum mechanics and relativistic mechanics so that 

together and based on Dirac's equation, a path can be found to construct an adequate probability 

density. 

For the corrections in the estimations to be really significant in Black Scholes premium, there 

would practically have to be interplanetary trading where the information lag was significant (for 

example, sunlight takes 8 minutes to reach the earth). However, the speed of light in the market can 

have a representation or equivalent in the delay of information coming from communication 

technology, such as optical fibers, laser communication, satellites or simply the internet and even the 

time in human reactions. So that tiny advantage in time could be converted into a window of 

opportunity with certain high-frequency trading algorithms. 

With the concept of the cm parameter, once determined, it can be implicitly applied to delays 

arising from information, not only due to physical distances but also due to technological factors and 

human reactions and platforms, and it can be a characteristic of each market and region. 
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