THE KALMAN FILTER IN THE EVENT-STUDY METHODOLOGY

Authors

  • Gerardo Dubcovsky Departamento de Contabilidad y Finanzas, Tecnológico de Monterrey, Campus Ciudad de México
  • Francisco Venegas-Martínez Centro de Investigación en Finanzas, Tecnológico de Monterrey, Campus Ciudad de México

DOI:

https://doi.org/10.21919/remef.v2i1.146

Keywords:

Event studies, Kalman filtering, Information theory

Abstract

The purpose of this paper is to extend the event-study methodology, into a richer dynamic environment, by including time-varying parameters. We use the Kalman filter to model parameters depending on time in a state-space representation of the statistical market model of the event-study analysis. We also apply Bayesian inference to updating relevant information, and we use information theory to choose the initial distribution of parameters. The proposed extension leads to a more robust set-up in appraising the impact of economic, and financial events on the market value of firms.

Downloads

Issue

Section

Artículos